Domains of Attraction of the Real Random Vector (x, X2) and Applications

نویسندگان

  • Edward Omey
  • Stefan Van Gulck
چکیده

Many statistics are based on functions of sample moments. Important examples are the sample variance s2(n), the sample coefficient of variation SV (n), the sample dispersion SD(n) and the non-central t-statistic t(n). The definition of these quantities makes clear that the vector defined by (︀∑︀n i=1Xi, ∑︀n i=1X 2 i )︀ plays an important role. In the paper we obtain conditions under which the vector (X,X2) belongs to a bivariate domain of attraction of a stable law. Applying simple transformations then leads to a full discussion of the asymptotic behaviour of SV (n) and t(n).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain of attraction of normal law and zeros of random polynomials

Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...

متن کامل

A Note on the Bivariate Maximum Entropy Modeling

Let X=(X1 ,X2 ) be a continuous random vector. Under the assumption that the marginal distributions of X1 and X2 are given, we develop models for vector X when there is partial information about the dependence structure between X1  and X2. The models which are obtained based on well-known Principle of Maximum Entropy are called the maximum entropy (ME) mo...

متن کامل

Distributions of the Ratios of Independent Kumaraswamy Variables and System Reliability Applications

‎In this article‎, ‎first of all‎, ‎the Kumaraswamy distribution is introduced‎. ‎Then‎, ‎the joint and marginal distributions of W = X1/X2 and T = X1/X1+X2 where X1 and X2 are independent Kumaraswamy random variables‎, ‎are obtained and the moments of these random variables are computed‎. ‎The distribution of random variables  W  and T  can be used in reliability studies and statistical models...

متن کامل

On Estimation Following Selection with Applications on k-Records and Censored Data

Let X1 and X2 be two independent random variables from gamma populations Pi1,P2 with means alphaθ1 and alphaθ2 respectively, where alpha(> 0) is the common known shape parameter and θ1 and θ2 are scale parameters. Let X(1) ≤ X(2) denote the order statistics ofX1 and X2. Suppose that the population corresponding to the largest X(2) (or the smallest X(1)) observation is selected. The problem ofin...

متن کامل

Generating Dirichlet random vectors using a rejection property

Let aj, 1 <. j <: n + 1, be n + 1 positive real numbers. The random vector (X1,X2,...,Xn) has a Dirichlet D(n; au a2,...,an, att+1) distribution if its probability density function (p.d.f.) is given by (cf. Wilks [14]): (i) f(xt,x2,...,xn) = Kx'rM ' ••• < " _ 1 ( i x , x 2 . . . X T 1 for every (xx,x2,...,xn)e Sn, where Sn -= {(*,., x2,..., xn) | Xi > 0, 1 <: r g n; xt + x2 + ... + x„ < 1} K = ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009